from transformers_js import import_transformers_js, as_url
import gradio as gr
# Reference: https://huggingface.co/spaces/Xenova/yolov9-web/blob/main/index.js
IMAGE_SIZE = 256;
transformers = await import_transformers_js()
AutoProcessor = transformers.AutoProcessor
AutoModel = transformers.AutoModel
RawImage = transformers.RawImage
processor = await AutoProcessor.from_pretrained('Xenova/yolov9-c')
# For this demo, we resize the image to IMAGE_SIZE x IMAGE_SIZE
processor.feature_extractor.size = { "width": IMAGE_SIZE, "height": IMAGE_SIZE }
model = await AutoModel.from_pretrained('Xenova/yolov9-c')
async def detect(image_path):
image = await RawImage.read(image_path)
processed_input = await processor(image)
result = await model(images=processed_input["pixel_values"])
outputs = result["outputs"] # Tensor
np_outputs = outputs.to_numpy() # [xmin, ymin, xmax, ymax, score, id][]
gradio_labels = [
# List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]]
(
(
int(xmin * image.width / IMAGE_SIZE),
int(ymin * image.height / IMAGE_SIZE),
int(xmax * image.width / IMAGE_SIZE),
int(ymax * image.height / IMAGE_SIZE),
),
model.config.id2label[str(int(id))],
)
for xmin, ymin, xmax, ymax, score, id in np_outputs
]
annotated_image_data = image_path, gradio_labels
return annotated_image_data, np_outputs
demo = gr.Interface(
detect,
gr.Image(type="filepath"),
[
gr.AnnotatedImage(),
gr.JSON(),
],
examples=[
["cats.jpg"],
["city-streets.jpg"],
]
)
demo.launch()
transformers_js_py